
(a)

(b)

Fig. 15 Pressure-volume relations in diamond cell

Fig. 16 Calculated pressure gradient $\mathrm{T} 1 \mathrm{Br}, 12 \mathrm{kbar}$

$$
V=f(P, T, h, r)=\pi r_{0}^{2} h
$$

At constant temperature and pressure

$$
(\mathrm{dV} / \mathrm{dP})_{P, T, r}=\pi r_{0}^{2}(\mathrm{dh} / \mathrm{dP})_{r}
$$

However, this is the same volume change which would occur at a given applied pressure in an identical system of constant h and variable r, Fig.26(b), 1.e.

$$
(\mathrm{dV} / \mathrm{dP})_{P, T, h}=2 \pi r h_{o}(\mathrm{dr} / \mathrm{dP})
$$

This volume change can be related to β and give a relations for $\mathrm{dP} / \mathrm{dr}$, the pressure gradient. Combining the definition of β, equation (1) and the foregoing expression, we get

$$
-\left(1 / v_{0}\right) 2 \pi r h_{0}(d r / d P)=\beta
$$

Multiplying both sides by $\mathrm{V}_{\mathrm{o}} / \Delta \mathrm{V}_{\mathrm{a}}$, where $\Delta \mathrm{V}_{\mathrm{a}}=$ $\pi h_{0}\left(r_{o}^{2}-r_{a}^{2}\right)$, we get

$$
-\left(2 r / r_{0}^{2}-r_{a}^{2}\right) d r=(\beta \mathrm{dP})\left(V_{0} / \Delta V_{a}\right)
$$

Integrating between r_{0} and r corresponding to $P=0$ kbar at the edge to $P=P$ at r, we get

$$
-\int_{r_{0}}^{f}\left(2 r / r_{0}^{2}-r_{a}^{2}\right) d r=v_{0} / \Delta v_{a} \int_{0}^{P} \beta d P
$$

or

Fig. 17 Calculated pressure gradient NaC1, 20 kbar

Fig. 18 Compressibility calculation - NaC1

$$
\begin{equation*}
\frac{1-r^{2}}{1-r_{a}^{2}}=\frac{\left(a P-b P^{2}\right) v_{0}}{V_{a}}=\frac{a P-b P^{2}}{a P_{a}-b P_{a}^{2}} \tag{2}
\end{equation*}
$$

Similarly, the pressure, P, and r may be compared to P_{m}, the maximum pressure at the center of the cell by means of a similar derivation to get relation (3).

$$
\begin{equation*}
\frac{1-r^{2}}{1-r_{m}^{2}}=\frac{\left(a P-b P^{2}\right) V_{0}}{\Delta V_{m}}=\frac{a P-b P^{2}}{a P_{m}-b P_{m}^{2}} \tag{3}
\end{equation*}
$$

Now. 1t is necessary to introduce another relation to evaluate the constant r_{a}; viz.

$$
\bar{P}=\sum_{i} A_{i} P_{i} / \sum_{i} A_{i}
$$

